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and
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Abstract. The semiclassical quantization of sawtooth maps is reconsidered from the viewpoint
of the higher-order terms in the asymptotic series. We carry out the semiclassical quantization in
the leading and next leading orders. However, we fail in both cases. The reasons are discussed
in detail.

1. Introduction

The quantization of chaotic systems is one of the hottest topics in contemporary theoretical
physics and is related to various quantum phenomena. The semiclassical theory plays an
essential role in such studies. The main problem is: ‘how can we construct quantum
eigenenergies from information about the corresponding classical dynamics?’. Formally, it
can be done by using the Gutzwiller trace formula [1] or the associated zeta function [2]
in terms of information on periodic orbits, although there is a convergence problem caused
by the exponential proliferation of periodic orbits. This difficulty was solved by Berry
and Keating [3], at least to leading order, using a resummation technique with analogy
to the Riemann zeta function. Now the major interest is in the higher-order corrections
and the resurgence relation in the asymptotic series. The higher-order corrections can
be categorized in three classes as follows. (1) Diffraction, which arises in discontinuous
systems, e.g. the creeping wave [4] and the edge contribution [5, 6] in billiard systems. (2)
Complex stationary points, which describe quantum tunneling paths [11–13]. (3) Higher-
order terms in the Taylor series of the action around a (real or complex) stationary point (i.e.
nonlinearity in the Jacobi field). The latter can be systematically enumerated [14]. However,
in a theoretical sense, it has not yet been fully understood what kinds of phenomena arise
from the effects (1)–(3) when the underlying classical dynamics is chaotic.

In the present paper, using a simple model (the quantized sawtooth map), we concentrate
on the role of the higher-order contribution in the whole asymptotic expansion. Here we
briefly explain the characteristic features of the classical and quantized sawtooth maps. The
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classical sawtooth map is an extension of Arnold’s cat map, which is defined on the torus
T2 and is given as

H = f (p)+ g(q)

+∞∑
n=−∞

δ(t − n). (1)

wheref (p) andg(q) are

f (p) = 1
2(p − 1

2)
2 g(q) = −K

2
(q − 1

2)
2 q, p ∈ [0, 1). (2)

HereK is real, andf (p) andg(q) obey the periodic boundary conditionsf (p) = f (p+1),
g(q) = g(q + 1). The mapping is

qn+1 = qn + pn+1 − 1
2 − w(n)q

pn+1 = pn +K(qn − 1
2)− w(n)p

(3)

wherew(n)q , w
(n)
p ∈ Z are the winding numbers for theq andp coordinates, respectively.

Arnold’s cat map is defined forK = integer. For convenience, we call the caseK 6= integer
the non-cat sawtooth map. The major difference between Arnold’s cat map and the non-cat
sawtooth map is the latter’s discontinuity property. For Arnold’s cat map, the discontinuity
is cancelled by the modulo operation. Thanks to this property, its classical and quantum
dynamics have been extensively investigated. For instance, the ergodic property [21, 22], the
distribution of periodic orbits [17, 23], and the semiclassical quantization [15, 16] are all well
known. Note that semiclassical theory is exact for the quantized Arnold’s cat map (i.e. all
higher-order terms vanish), and it displays the number-theoretic level degeneracies [15, 16].
However, for the non-cat sawtooth map, the extension is regarded as a discontinuous
perturbation of Arnold’s cat map. Then the situation is very different from the case of
a smooth perturbation [19, 20]. Since the modulo operation cannot remove the discontinuity
in this case, this discontinuous extension induces bifurcation of the trajectories [17] and
recovery of the level repulsion [18] for the quantum counterpart. The discontinuity of the
dynamics also induces a diffraction effect analogous to the billiard problem. In this paper we
explicitly evaluate the diffraction effect and elucidate the relation between the higher-order
terms inh̄ and the bifurcation of periodic orbits.

The organization of the remainder of this paper is as follows. In section 2, we first
carry out the leading-order semiclassical quantization by using the Smilansky zeta function
and show its failure. In section 3, using the Fourier transformation of the trace of the
powers of the Floquet operator, we examine the effect of the bifurcation of the periodic
orbits. In section 4, we evaluate the diffractive contribution and add it to the semiclassical
quantization. In section 5, we summarize our results and give our conclusion.

2. Semiclassical quantization to leading order

First we consider the behaviour of the bifurcation of the periodic orbits. For enumeration
of the periodic orbits, we used the symbolic dynamics derived by Bird and Vivaldi [17]. In
figures 1 and 2, the periodic orbits with period up to 6 forK = 1.0 and 1.3 are depicted.
For K = 1.0 (in general,K = integer), the periodic orbits form a lattice structure. In
contrast, forK = non-integer, the periodic orbits are rearranged and bifurcated. In figure 3,
the occurrence of the bifurcation for the short periodic orbits are depicted. The vertical
axis represents the number of prime periodic orbits up to period 5. The horizontal axis is
the perturbation parameterK. The discontinuous steps correspond to the bifurcation of the
periodic orbits. The remarkable feature is that the figure looks like a devil’s staircase. This is
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Figure 1. The periodic orbits in phase space forK = 1.0. (a)
T = 1, (b) T = 2, (c) T = 3, (d) T = 4, (e) T = 5, (f )
T = 6, (g) T = 1–6.
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Figure 2. The periodic orbits in phase space forK = 1.3. (a)
T = 1, (b) T = 2, (c) T = 3, (d) T = 4, (e) T = 5, (f )
T = 6, (g) T = 1–6.
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Figure 3. The bifurcation diagram. The vertical axis is the number of prime periodic orbits
(PPOs) up to period 5. The horizontal axis is the perturbation parameterK.

a common feature of discontinuous hyperbolic systems, such as hyperbolic billiard systems
[7]. The similarity between the sawtooth maps and dispersing billiards was mentioned by
Chernov [24]. Without giving a rigorous statement, we expect that a plot of the system
parameterK versus the topological entropy would really be a devil’s staircase. This drastic
behaviour causes a problem in the quantum counter part as we will see later.

The quantum dynamics is governed by the time evolution operatorÛ (Floquet operator):

ψ(q; t + 1) = Ûψ(q; t) (4)

where

Û = exp

(
− i

h̄
f (p̂)

)
exp

(
− i

h̄
g(q̂)

)
(5)

and p̂ and q̂ are momentum and position operators. The eigenvalue problem consists in
solving the following equation:

Ûψn = eiωnψn. (6)

Due to the compactness of phase space, the uncertainty relation for the quantum map is
given as

1

2πh̄
= N (7)

whereN is the number of lattice points. The matrix size of the time-evolution operator
is justN . By using the Fourier basis, the matrix elements of the quantum time-evolution
operator are given as

〈n|Û |m〉 = (−1)n−m
e− iπ

4√
N

exp

[
iπ

N
Km2

]
exp

[
iπ

N
(n−m)2

]
. (8)
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Figure 4. Parametric motion of the eigenangles versusK for N = 10.

Here−N
2 6 n, m 6 N

2 − 1. Because of the symmetry of the map, the boundary condition
is different for even or oddN , namely

N = odd: anti-periodic boundary conditionψ(q + 1) = −ψ(q)
N = even: periodic boundary conditionψ(q + 1) = ψ(q).

(9)

In this paper, we mainly setN = even. Here we note that the general sawtooth map defined
in equations (1)–(3) does not satisfy the quantizability condition, as mentioned in [15].

In figure 4, the parametric dependence of the eigenangles is depicted forN = 10.
The behaviour forK between−4.0 and 0.0 is qualitatively different from that outside this
interval. This reflects the underlying classical dynamics [regular (−4< K < 0) or chaotic
(K < −4, K > 0)]. As reported in [18], the level repulsion immediately occurs whenK

is changed away fromK = integer. However, the level degeneracies are still observed for
K 6= integer. From numerical observation, they occur whenK is certain rational value. In
figure 5, we depict the level spacing distribution for the quantized sawtooth maps. When we
change the system parameterK starting fromK = integer, the transition from the singular
distribution to the Wigner distribution is clearly seen.

To evaluate the eigenangles semiclassically, we use the zeta function formalism. The
Selberg-type zeta function for the quantum kicked system was derived by Smilansky [25].
The spectral determinant for̂U is given as

P(z) = det(z − Û ) =
N∑
n=0

anz
n = 0 (10)

wherez = eiω. Because of the finite dimension ofÛ , P(z) is a finite series. The coefficients
ak for k = 1, . . . , N satisfy the Newton relation [25],

aN−k = −1

k

k∑
n=1

aN−k+n Tr(Ûn). (11)
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Figure 5. Distributions of the level spacings. (a) K = 1.0, (b) K = 1.05, (c) K = 1.3. The
matrix size isN = 1/2πh̄ = 500. The full and broken curves represent the Poisson distribution
and the Wigner distribution, respectively.

To investigate the spectral properties, it is convenient to consider the following zeta function:

Z(ω) = e−i(2+Nω)/2P(eiω) (12)
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Figure 5. (Continued)

where

ei2 = ei[(
∑N
j=1 ωj )−Nπ ] = det(−Û ). (13)

We can obtain this formula from the analogy with the derivation of the Riemann–Siegel
look-alike formula [25]. We note here that for realω, this zeta functionZ(ω) crosses the
real axis and thatak is related toaN−k (self-inversive property):

ak = a∗
N−ke

i2. (14)

One can show that the trace of integer powers ofÛ is given as [26]

Trsc(ÛT ) = in
∑

po,n=Tpor

Tpo√
| det(Mr

po − I )|
exp

[
i

h̄
Spo − iπνpo

2

]
(15)

where the actionSpo is given by

Spo =
n−1∑
i=0

{−(f (ppo,i)+ g(qpo,i))+ ppo,i+1(qpo,i+1 − qpo,i)− w(i)po,pqpo,i + w(i−1)
po,q ppo,i}

(16)

andνpo is the Maslov index of the periodic orbit with the indexpo, andr is the repetition
of the periodic orbit. Since we may expect2 → 0 in the semiclassical approximation as
h̄ → 0, then the zeta functionZ(ω) would be approximated well byZsc(ω) defined as
follows [25]:

Zsc(ω) =
[N/2]−εN∑
l=0

[A∗
N−le

i(l−N/2)ω + AN−le−i(l−N/2)ω] + 1
2εN(AN/2 + A∗

N/2) (17)
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where

εN =
{

1 for evenN

0 for oddN
(18)

and

Ak = −1

k

k∑
n=1

AN−k+n Trsc(Ûn). (19)

Here [x] stands for the integer part ofx. However, the accuracy ofZsc(ω) holds only in
the semiclassical limit (¯h → 0). For a relatively large value of ¯h, we use the following zeta
function for evenN :

Z̃sc(ω) =
[N/2]−1∑
l=0

{ei2/2A∗
N−le

i(l−N/2)ω + e−i2/2AN−le−i(l−N/2)ω} + e−i2/2AN/2 (20)

with

ei2 = Al

A∗
N−l

. (21)

We note here that thanks to the self-inversive property, equation (14), the zeta function (17)
or (20) has the analytical bootstrap effect, i.e. the latter terms determine the former terms.
This effect was mentioned by Voros [27]. This effect poses a very severe restriction on
the semiclassical analysis because we have to enumerate all periodic orbits up to period
[N/2]. In addition, the mechanism of this effect is presently unknown for quantized chaotic
systems, especially deep in the quantum regime.

Table 1. Number of prime periodic orbits forK = 1 (cat map) andK = 1.3 (Non-cat sawtooth
map).

Period Number forK = 1 Number forK = 1.3

1 1 1
2 2 4
3 5 10
4 10 18
5 24 40

Total 42 78

We carry out the semiclassical quantization based on the zeta function (20). Our
numerical result is limited to the deep quantum regime, i.e. for large ¯h, because for small ¯h,
we have to consider orbits of larger periodsT (i.e. exponential proliferation of the number
of the periodic orbits). In fact we setN = 1/2πh̄ = 10. First, we consider the caseK = 1.0
(cat map). The numbers of prime periodic orbits up to period 5 in table 1 and the exact
quantum eigenangles in table 2 are listed for the casesK = 1.0 andK = 1.3. As we can
see, the eigenangles are rational multiples ofπ [15, 16]. The corresponding zeta function is
depicted in figure 6(a). Note that for the cat mapK = 1, the semiclassical result is exact.
For K 6= 1, the situation is quite different from the caseK = 1. The number of prime
periodic orbits increases forK = 1.3. In figure 6, we depict the parametric dependence of
the zeta function forK = 1 (cat map), 1.1, 1.2, 1.3, 1.4, 1.5. The farther awayK is from
an integer, the worse is the agreement between the semiclassical and quantum results. In
particular, the semiclassical zeta function does not cross the real zero axis near the level
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Table 2. Exact quantum eigenangles:K = 1 (cat map) andK = 1.3 (Non-cat sawtooth map)
for N = 10.

ith eigenangle ω/2π for K = 1 ω/2π for K = 1.3

i = 1 −4.666 666 666 7e-01−4.455 208 539 4e-01
2 −3.666 666 666 7e-01−4.523 543 334 7e-01
3 −1.666 666 666 7e-01−2.893 604 605 8e-01
4 −1.333 333 333 3e-01−2.209 279 591 4e-01
5 −3.333 333 333 3e-02−6.768 011 443 6e-02
6 3.333 333 333 3e-02−5.515 429 762 0e-02
7 1.333 333 333 3e-01 6.005 895 678 8e-02
8 1.666 666 666 7e-01 1.816 401 932 6e-01
9 3.666 666 666 7e-01 2.468 690 916 7e-01

10 4.666 666 666 7e-01 3.174 297 774 7e-01

degeneracies in the regimeK 6= integer (see also figure 4). Even the pairs of the eigenangles
having relatively large spacing can not been reproduced semiclassically. This implies that
the missing semiclassical eigenangles are located away from the real axis of the eigenangle
ω, that is,ω(sc)

n = ω(sc,r)
n + iηn, whereω(sc,r)

n andηn are real (i.e. break-down of the unitarity
of Û (sc)). The reason for this failure of the semiclassical quantization will be shown in the
next section.

3. Fourier transform of Tr (ÛT )

To understand the discrepancy between the semiclassical and quantum zeta functions for
K = 1.1 ∼ 1.5 in figure 6, we consider how the classical information is contained in the
exact quantum trace. To do so, the Fourier transform of the trace (FTT) is a useful tool.
The FTT of Tr(ÛT ) is defined by

A(S;M,n0, T ) ≡
∣∣∣∣ 1

M

n0+M−1∑
j=n0

exp[−2πjS] Tr

(
Û T

(
h̄ = 1

2πj

)) ∣∣∣∣ (22)

where 06 S < 1. It is obvious that the spectrum has peaks at the corresponding classical
actionsSpo mod 1. The calculation is carried out forK between 0.0 and 3.0 and results are
shown in figure 7. In figure 7(a), which corresponds toT = 1, the fixed pointSpo = 0 is
real. We can see a new peak aroundSpo = 0, K = 1.5. As will be explained below, this
corresponds to the contribution from the torus boundary to the integral. This contribution
becomes comparable with the contribution from real periodic orbits nearK = 2. In
figures 7(b)–(e), which represent the higher periods, similar features are observed. We
note here that the number of periodic orbits increases as the period increases. As seen in
the FTT for billiard systems [8, 9], the peak distribution in the FTT is uniform for higher
periodsT and for largeK, and the birth of new peaks with changingK is random. This
randomness can be explained as follows. Since the periodic orbits are uniformly distributed
[28], then the bifurcations of periodic orbits occur everywhere inT2 for changingK. Thus,
the action of the bifurcated periodic orbits is also randomly and uniformly distributed. The
relationship between the randomness in the bifurcation process and the randomness in the
parametric motion of the eigenangles is not yet understood. As a measure of the convergence
of each semiclassical trace with respect to ¯h, the h̄-dependence of the relative deviation1
of the semiclassical trace from the exact trace is depicted in figure 8. For higher periods,
the convergence is slower and1 shows some periodic oscillation. This indicates that some
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Figure 6. Zeta function : Quantum exact (dotted lines) and semiclassical result (O(h̄0), full
curves). (a) K = 1.0 (cat map), (b) K = 1.1, (c) K = 1.2, (d) K = 1.3, (e) K = 1.4, (f )
K = 1.5. Note that the semiclassical result is exact forK = 1.
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Figure 6. (Continued)

contributions which have non-zero action, are missing in the semiclassical calculation. In
the next section, we will carefully examine the asymptotic expansion of Tr(ÛT ).
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Figure 6. (Continued)

4. The diffractive contributions

In this section we investigate the trace carefully. Applying the Poisson summation formula
to the trace of equation (8), we rewrite the trace Tr(ÛT ):

Tr(ÛT ) = e− iπT
4 NT/2

+∞∑
{li }=−∞

∫
D

dx exp

[
i

h̄
φ(l; x)

]
(23)
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Figure 7. Parametric motion of the Fourier transform of
the trace (FTT) forK between 0.0 and 3.0 withn0 = 20
andM = 110. The classical actionSpo is shown versus
K. (a) T = 1, (b) T = 2, (c) T = 3, (d) T = 4, (e)
T = 5.

whereh̄ = 1/2πN , x = (x1, x2, . . . , xT ) with xi ∈ [− 1
2,

1
2), and l = (l1, l2, . . . , lT ) with

li ∈ Z. The phaseφ(l; x) is given as

φ(l; x) = l · x + 1
2x> · A · x (24)
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Figure 8. The h̄-dependence of the deviation of the semiclassical trace from the exact trace,
1 = | Tr(ÛT )q − Tr(ÛT )sc|/| Tr(ÛT )q| . N = 1/2πh̄ is the matrix size. The results for periods
T = 1, 2, . . . ,5 are depicted for the system parameterK = 1.3.

whereA is the matrix

A =



K + 2 −1 0 · · · 0 −1
−1 K + 2 −1 0

0 −1 K + 2
. . .

...
...

. . .
. . . −1 0

0 −1 K + 2 −1
−1 0 · · · 0 −1 K + 2


. (25)

The range of integration in equation (23) isD = [− 1
2,

1
2)
T . The leading-order contribution

to the trace is already given in equation (15). The technical details of the derivation of the
next-leading-order contribution is given in the appendix. The result is

Tr(ÛT )|Diff ;SP ' T e−iπ/4(2πh̄)1/2

2i
√| det(A′)|

×
∑

Diff ;SP

{
exp

[
i

h̄
8(l′; x′∗)

]
cot

[
π

(
K + 2

2
− x∗

2 − x∗
T

)] ∣∣∣∣
x=x∗;x1= 1

2

+ exp

[
i

h̄
8(l′; x′∗)

]
cot

[
π

(
K + 2

2
+ x∗

2 + x∗
T

)] ∣∣∣∣
x=x∗;x1=− 1

2

}
(26)
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where the matrixA′ is defined in equation (A3):

8(l′; x′) =
T∑
j=2

lj xj + K + 2

2

T∑
j=2

x2
j − 2

T−1∑
j=2

xjxj+1 + K + 2

8
± x2 ± xT (27)

and

x′ = (x2, x3, . . . , xT ) l′ = (l2, l3, . . . , lT ) (28)

and the signs± correspond tox1 = ± 1
2, respectively. For the actual numerical calculation

of the diffractive contribution, the following relation is very useful:

l′ + A′x′ − b′ = 0 (29)

whereb′ = (± 1
2, 0, . . . ,0,± 1

2). The integersl2, . . . , lT provide a symbolic description for
these diffraction orbits. The determinant of the(T − 1) × (T − 1) matrix A′ is explicitly
evaluated as

det(A′) =
(
λ− 1

λ

)−1 (
λT − 1

λT

)
(30)

whereλ is the largest eigenvalue of the one-step tangent map.
Here we include the diffraction effect of orderO(h̄1/2) derived here. To see

whether the inclusion of this term improves the approximation, the FTT is shown in
figure 9 for K = 1.3 and T = 1, 2, . . . ,5. The vertical axis represents the absolute
value of the difference between the quantum exact resultA(S;M,n0, T )q, the leading-
order approximationA(S;M,n0, T )1st, and second-order approximation (i.e. the diffractive
contribution)A(S;M,n0, T )2nd of the FTT spectrum. The horizontal axis is the action
shown as 2Spo mod 1, because we putN = even, for numerical convenience. The vertical
solid lines are located at the action values corresponding to the real prime periodic orbits.
We do not show the repetitions of the prime periodic orbits. As we can see, however,
there is no improvement for the higher Tr(ÛT ). In particular, the contribution forT = 5
seems to be divergent. We have also tried other values ofN = 1/2πh̄ and K, with
qualitatively similar results. The reason for the failure discussed above is that the cotangent
in equation (26) causes a divergence. This cotangent diverges when the argument approaches
integer multiples ofπ , namely at the bifurcation points. In order that the series should be
meaningful, we have to avoid the neighbourhoods of the bifurcation points. The width of
these dangerous zones can be roughly estimated as follows. In order to avoid the dangerous
zone, the magnitude of the cotangent should be less than 1. Therefore, the width1K of
the dangerous zone is given by the condition∣∣∣∣∣h̄1/2 cot

(
π

(
Kbf + 1K

2 + 2

2
± x∗

2 ± x∗
T

))∣∣∣∣∣ ≈ 1 (31)

whereKbf is the bifurcation point. However, as shown in figure 3 the bifurcations of the
periodic orbits occur successively, and the dangerous zones around the different bifurcations
overlap. Thus there is no safety zone for this asymptotic series.

Consider next the semiclassical limit ¯h → 0. In this limit, in order to quantize the
sawtooth map, longer periodic orbits up to period [N/2] = [1/4πh̄] are required. As a
result, the number of periodic orbits needed increases exponentially. The longer periodic
orbits form the smaller steps in figure 3. Consequently, with the increased number of the
periodic orbits, these steps become finer and the intervals between steps become narrower.
On the other hand, the dangerous zones also become narrower, because these widths are
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Figure 9. The differences of the FTT spectrum between the exact quantum result and the leading-
order approximation and between the exact quantum result and the second-order approximation
for K = 1.3. (a) T = 1, (b) T = 2, (c) T = 3, (d) T = 4, (e) T = 5. The vertical
axis represents the absolute value of the difference between the quantum exact result and the
leading (second-order) approximation, shown on a logarithmic. The horizontal axis represents
the action as 2Spo mod 1. The plot for the leading-order (second-order) approximation is in the
full (broken) curve. The vertical full line indicates the action of the real prime periodic orbit at
2Spo mod 1. (Note that the repetitions of the prime periodic orbits are excluded.). Here we only
considerN = 1/2πh̄ = even.

controlled byh̄. In this limit, we do not know which effect dominates at different values
of h̄. This remains an open problem.

The appearance of the cotangent function in equation (31) originates from the use of
integration by parts for the integral (23) and the sum overli in equation (23). Integration
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Figure 9. (Continued)

by parts is the most primitive method for obtaining asymptotic series†. In order to improve
the accuracy in the neighbourhoods of the bifurcation points, we can use the uniform
approximation. For Tr(Û), our problem is reduced to the evaluation of the following type
of integrals:

I =
∫ ∞

0
du exp

[
iλ

(
u2

2
− αu

)]
(32)

† There is another procedure for obtaining the asymptotic series. That is the Euler–Maclaurin sum formula [35].
However, the Euler–Maclaurin sum formula does not have the semiclassical picture and the extension to the
multiple sum is unknown.
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Figure 9. (Continued)

whereλ is a large parameter, andα is a real number. This integral is nothing but the
canonical function in the standard uniform approximation [29]. More precisely, it is just a
variant of the Fresnel integral. This implies that the contribution from each real and diffrative
periodic orbit is evaluatedexactlyby the leading order of the uniform approximation. Then,
there is no higher-order corrections in this case. However, we have to sum up an infinite
number of integrals of the type of equation (32). For Tr(ÛT ), T > 2, unfortunately, the
procedure of the uniform approximation is unknown.

5. Summary

In this paper, we revised the semiclassical quantization of the sawtooth map from the
viewpoint of the higher-order contributions beyond the leading order. The numerical
calculation including the diffrative contributions shows that for non-integerK, the usual
semiclassical theory does not mimic quantum theory, even when we include the diffractive
contribution. In particular, the semiclassical zeta function does not cross real zero axis in
some cases. The failure seems to be due to two factors: (1) the large value of ¯h in the
deep quantum regime; (2) the bifurcation of periodic orbits. The numerical observations
suggest that the immediate release of the level degeneracies and the bifurcation of periodic
orbits are related each other. Consequently, we have explicitly demonstrated a new type
of obstacle to the semiclassical theory of quantized chaotic systems. However, this is not
a discouraging result. Rather, it is an exciting result that it indicates the desirability of
investigating the relations among the different contributions from the periodic orbits (all
saddle-point contributions). Further research is clearly required.

Recently, in [37], the accuracy of the trace Tr(Û) for sawtooth maps was very carefully
checked within the leading-order approximation. The error of Trsc(Û) decreases for very
largeN . However, although individual trace may be well approximated by the leading-order
terms, the totality of the underlying chaotic dynamics is very important for the semiclassical
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evaluation of eigenvalues, as shown in the present paper. Unfortunately, even though the
sawtooth map is very simple, the semiclassical enumeration of eigenvalues in such a large-
N regime is practically impossible. Another route for further investigation is needed. The
number-theoretical method may be efficient as it succeeded for the Arnold cat map.

Next we compare the results of the present investigation with the case of the quantized
baker map, which also has diffraction effects, but no bifurcations. The order of the next-
leading contribution isO(h̄ 1

2 ), the same as in our case [31, 32]. The explicit formula was
derived and applied for the evaluation of the trace in [32]. The authors of [32] pick up the
terms which include the stationary point, from an infinite number of integrals which comes
from the use of the Poisson sum formula, and explicitly evaluate these terms. This procedure
can be also applied for the sawtooth map and will get good accuracy, because the remaining
terms give an exponentially small contribution (but their number is infinite). However, the
terms which these authors evaluated, are not ordered in ¯h. This is a difficult point of the
diffraction problem. The anomalous behaviour, which comes from the diffraction effect
of O(h̄1/2) were observed in the time evolution [33] and discussed for the case of the
semiclassical form factor in [34]. Since the order of the next-order contribution is essential
for these arguments, the similar behaviour may be expected for the quantized sawtooth map.

Finally, to obtain a full understanding of the universal properties (such as level repulsion)
of quantized chaotic systems via the corresponding classical dynamics, one needs a simple
and analytically treatable model and a mathematical tool to handle the whole asymptotic
series. For the latter, elaborate methods like hyperasymptotics [36] would be essential.
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Appendix. Derivation of the diffractive contribution

A.1. Tr(ÛT ) for arbitrary T > 3

By applying results on multiple integrals of the Fourier type [29], we can evaluate the
higher-order contributions to Tr(ÛT ). First, we rewrite theT -dimensional integral into the
(T − 1)-dimensional integral, using the divergence theorem:

+∞∑
{li }=−∞

∫
D

exp

[
i

h̄
φ(l; x)

]
dx = h̄

i

+∞∑
{li }=−∞

∫
∂D

d6 exp

[
i

h̄
φ(l; x)

]
N · ∇φ
|∇φ|2 . (A1)

Carrying out the stationary-phase approximation, we obtain

+∞∑
{li }=−∞

∫
D

exp

[
i

h̄
φ(l; x)

]
dx ∼= h̄

i

+∞∑
{li }=−∞

∑
SP

exp

[
i

h̄
φ(l; x∗)

]
sgn[N · ∇φ]

|∇φ|
(2πh̄)

T−1
2√| det(A′)|
(A2)
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where the sum is taken over the contributions of the stationary points andA′ is a
(T − 1)× (T − 1) real symmetric tridiagonal matrix:

A ′ =



K + 2 −1 0 · · · 0 0
−1 K + 2 −1 0

0 −1 K + 2
. . .

...
...

. . .
. . . −1 0

0 −1 K + 2 −1
0 0 · · · 0 −1 K + 2


. (A3)

The domainD is a T -dimensional hypercube. Thus,D has 2T (T − 1)-dimensional
hypercubes as its surface. There are 2T different locations of the stationary points on∂D.
However, by considering each case, we find that there are, essentially, only two different
cases, becauseφ(l; x) is symmetric with respect tol andx. These two cases correspond
to xk = ± 1

2 in each directionxk. Therefore, we only specify the location on one pair of
faces of theT -dimensional hyperplainD: x1 = ± 1

2. The corresponding stationary phase
condition gives the equations for the stationary phase point:

l1 + (K + 2)(± 1
2)− x2 − xT 6= 0

l2 + (K + 2)x2 − x3 − (± 1
2) = 0

l3 + (K + 2)x3 − x4 − x2 = 0

...

lT−1 + (K + 2)xT−1 − xT − xT−2 = 0

lT + (K + 2)xT − (± 1
2)− xT−1 = 0.

(A4)

Here the first line is due to the discontinuity at the boundary of the configuration space.
From this stationary phase condition, we obtain the physical meaning of the corresponding
classical orbit in the sense used by Keller [10]: the corresponding orbit eventually reaches
one of the boundaries atx = ± 1

2. As shown below (equation (A6)), at the boundary, the
momentum is shifted by an amount

· · · →
[
xT
pT

]
→

[
x1 = ± 1

2
p1

]
→

[
x2

p2,α

]
↑

Discontinuous
↓[
x2

p2,βy

]
→

[
x3

p3

]
→ · · ·

(A5)

wherep2,α 6= p2,β . The resulting expression for this contribution is

Tr(ÛT )|Diff ;SP ' T e−iπ/4(2πh̄)−1/2h̄

i
√| det(A′)|

∑
Diff ;SP

+∞∑
l1=−∞

∞∑
l2,l3,...,lT=−∞

×
{

exp

[
i

h̄
φ(l; x∗)

]
sgn[N · ∇φ]

|l1 + K+2
2 − x∗

2 − x∗
T |

∣∣∣∣
x=x∗;x1= 1

2

+ exp

[
i

h̄
φ(l; x∗)

]
sgn[N · ∇φ]

|l1 − K+2
2 − x∗

2 − x∗
T |

∣∣∣∣
x=x∗;x1=− 1

2

}
. (A6)
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The amplitude factor in equation (A6) is related to the difference between the momenta. This
is very similar to the diffraction orbits for the wedge, as discussed by Keller [10]. Actually,
the diffraction coefficient for the wedge which is the amplitude factor for the diffraction
orbit, corresponds to the angle difference between the incoming and the outgoing directions
at the wedge (for a nice re-derivation, see [30]). Finally, using the following relation

+∞∑
n=−∞

1

n+ α
= π cot(πα) (α is not integer.) (A7)

Equation (26) is immediately obtained.

A.2T r(Û)

For this case, the exact quantum trace is reduced to

Tr(Û) = e−iπ/4

√
N

N/2−1∑
n=−N/2

exp

(
iπK

N
n2

)

= e−iπ/4
√
N

+∞∑
l=−∞

∫ + 1
2 −ε

− 1
2 +ε

dx exp[iπN(Kx2 − 2lx)]. (A8)

In the second line, we here used the Poisson sum formula. First, if, for a certain value ofl,
there is a stationary phase pointx∗ in [− 1

2,
1
2), then we divide the integral into three pieces:∫ 1

2 −ε

− 1
2 +ε

=
∫ +∞

−∞
−

∫ − 1
2 −ε

−∞
−

∫ +∞

+ 1
2 +ε

. (A9)

The first term on the r.h.s. can be exactly evaluated by the usual stationary approximation.
The second and third terms which arise from the edge of the interval of integration can be
evaluated by successive applications of integration by parts. For the case that there is no
stationary point in [− 1

2,
1
2), the contribution can be evaluated by integration by parts in the

same way. Summing up the stationary and edge contributions, we obtain

Tr(Û) ' (Contribution from stationary points)

+eiK/h̄8−iπ/4 (2πh̄)
1/2

π

+∞∑
n=0

(2h̄K)n(n− 1
2)!

in+1
F2n+1

(
K

2

)
(A10)

where

Fk(x) =
+∞∑
l=−∞

1

(x + l)k
. (A11)

SeveralFk(x)’s are given by

F1(x) = πX (A12)

F3(x) = π3X(1 +X2) (A13)

F5(x) = π5X( 2
3 + 5

3X
2 +X4) (A14)

F7(x) = π7X( 17
45 + 77

45X
2 + 7

3X
4 +X6) (A15)

F9(x) = π9X( 62
315 + 88

63X
2 + 16

5 X
4 + 3X6 +X8) (A16)

where

X = cot(πx). (A17)

WhenK(> 0) is an even integer,F2n+1(K/2), this contribution diverges. This corresponds
to the bifurcation of the fixed points.
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A.3. T r(Û2)

A.3.1. Contribution from the stationary points on∂D. Applying the result in section A.1,
we obtain the contribution from the stationary points on∂D as follows:

Tr(Û2)|Diff ;SP ' − exp

(
− iπ

4

) (
2πh̄

K + 2

)1/2

×
{ ∑

− K
2 <l26

K
2 +2

cot

[
π

(
K + 2

2
− 2(1 − l2)

K + 2

)]

× exp

[
i

h̄

(
K + 2

8
− (1 − l2)

2

2(K + 2)

)]
+

∑
− K

2 −26l2<K
2

cot

[
π

(
K + 2

2
+ 2(1 + l2)

K + 2

)]

× exp

[
i

h̄

(
K + 2

8
− (1 + l2)

2

2(K + 2)

)] }
. (A18)

A.3.2. Contribution from the critical points on∂D

Tr(Û2)|Diff ;Corner ' (2πh̄) exp

(
i

h̄

K

4

) (
cot

(
πK

2

))2

. (A19)

WhenK(> 0) is an even integer, the r.h.s. diverges. Since the actionK/8 in equation (A19)
is twice as large as in equation (A10), the contribution of the action of Tr(Û2) is just the
repetition of the action to Tr(Û).
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